Coupling of ATP Synthesis to Reversal of Rat Liver Microsomal Ca²⁺-ATPase[†]

W. W. Webb and M. W. Anders*

Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642

Received April 9, 1985

ABSTRACT: The reversal of the rat liver microsomal Ca^{2+} -ATPase transport cycle was studied. Microsomes were loaded with $^{45}Ca^{2+}$ (~ 30 nmol/mg of protein) in an ATP-dependent process, and the time dependency of the microsomal $^{45}Ca^{2+}$ efflux was determined with various ADP and inorganic phosphate (P_i) concentrations. Pseudo-first-order rate constants (K'_e) for $^{45}Ca^{2+}$ efflux were determined. Although there was considerable $^{45}Ca^{2+}$ efflux in the absence of added ADP or P_i , the addition of ADP or P_i alone had minimal effects upon the K'_e ; in contrast, a 2.5-fold increase in the K'_e was observed in the presence of both ADP and P_i . The apparent K_m values for ADP and P_i were 4 μ M and 0.22 mM, respectively. Stimulation of $^{45}Ca^{2+}$ efflux by ADP and P_i was associated with ATP synthesis. The calcium ionophore A23187 prevented ATP synthesis, which indicates that the Ca^{2+} gradient facilitates the coupling of ATP synthesis to Ca^{2+} efflux.

The rat liver endoplasmic reticulum Ca^{2+} -ATPase plays an integral role in the maintenance of a low intracellular Ca^{2+} (Ca^{2+}) concentration (Becker et al., 1980; Murphy et al., 1980). The Ca^{2+} -ATPase has been implicated as a primary cellular target for several hepatotoxins, which are believed to induce toxic cell injury through alterations in intracellular Ca^{2+} homeostasis (Schanne et al., 1979; Farber, 1981; Jewell et al., 1982; Trump & Berezesky, 1984). Recent studies suggest that the endoplasmic reticulum or microsomal Ca^{2+} pool is the source of Ca^{2+} ; released upon α_1 -agonist, vasopressin, angiotensin II, and glucagon stimulation and that d-myoinositol 1,4,5-triphosphate may serve as a messenger for these hormonal stimuli (Joseph et al., 1984; Berridge, 1984; Berridge & Irvine, 1984).

Despite the apparent physiological importance of the Ca²⁺-ATPase in the Ca²⁺, homeostasis of rat hepatocytes, little information about the physical properties and mechanism of this ATPase is available. The proposed mechanism of the rat liver microsomal Ca²⁺-ATPase is consistent with the ionmotive E₁E₂ATPase mechanism found in both the sarcoplasmic reticulum (deMeis & Tume, 1977) and the erythrocyte (Chiesi et al., 1984) Ca²⁺-ATPases. The findings of a hydroxylamine-sensitive phosphoenzyme (Heilman et al., 1984), of inhibition of Ca²⁺-ATPase activity by intravesicular Ca²⁺ accumulation (Brattin & Waller, 1983), and of enhanced phosphoenzyme dephosphorylation by Mg²⁺ (Heilmann et al., 1984) are consistent with the E₁E₂ATPase mechanism. The complete reversibility of the transport cycle with ATP synthesis coupled to the Ca2+ efflux, as observed with the sarcoplasmic reticulum Ca²⁺-ATPase (Panet & Selinger, 1972; Hasselbach, 1978), is characteristic of this mechanism.

To further our understanding of the mechanism of the rat liver microsomal Ca²⁺-ATPase and its role in intracellular Ca²⁺ homeostasis, the reversibility of the enzyme transport cycle was studied. We report that, although passive Ca²⁺ efflux is observed, Ca²⁺ efflux is associated with ATPase reversal and that ATP synthesis is coupled to this efflux.

MATERIALS AND METHODS

Materials

[32P]P_i¹ (1.0 Ci/mmol) was obtained as the potassium salt from New England Nuclear Co. (Boston, MA). Adenosine 5'-triphosphate (disodium salt) and adenosine 5'-diphosphate

(sodium salt) were purchased from Sigma Chemical Co. (St. Louis, MO). A23187 was a generous gift from Dr. W. R. Fields, Eli Lilly and Co., Indianapolis, IN. All other chemicals were of reagent grade and were obtained from commercial sources.

Methods

Microsome Preparation. Hepatic microsomes were prepared as previously described (Anders, 1968) from male Long Evans rats (Charles River Breeding Laboratories, Kingston, NY) weighing 250–350 g. Briefly, the rats were killed by decapitation, and the livers were perfused and then homogenized as a 20% solution (w/v) in ice-cold homogenization buffer (80 mM KCl, 50 mM PIPES, 5.0 mM NaN₃, and 1.0 mM MgCl₂, pH 6.8) with a Potter Elvehjem tissue homogenizer. The homogenate was centrifuged at 9000g for 20 min (4 °C), and the supernatant was filtered through gauze and centrifuged at 100000g (4 °C) for 60 min. The resultant microsomal pellet was resuspended with homogenization buffer to a concentration of 5–15 mg of protein/mL. Protein concentrations were determined according to the method of Lowry et al. (1951) with bovine serum albumin as the standard.

Microsomal Ca²⁺ Influx and Efflux Determinations. Microsomes were loaded with $^{45}\text{Ca}^{2+}$ by incubating microsomes (\sim 0.25 mg of protein/mL) in a buffer consisting of 50 mM PIPES, 5.0 mM NaN₃, 5.0 mM MgATP, and $^{45}\text{CaCl}_2$ (0.1–0.2 μ Ci), at pCa²⁺ 5.30, pH 6.8, and 37 °C. Portions (200 μ L) were removed at several times and were quickly filtered through 0.45- μ m Millipore HA filters (Millipore Corp., Bedford, MA), and the filters were immediately washed with 10 mL of ice-cold wash buffer (80 mM KCl, 50 mM PIPES, 5.0 mM NaN₃, 5.0 mM EGTA, 2.59 mM CaCl₂, 1.0 mM MgCl₂, and 1.0 mM HgCl₂, pH 6.8). The amount of $^{45}\text{Ca}^{2+}$ retained on the filter was measured by liquid scintillation spectrophotometry.

For the efflux experiments, loaded microsomes (\sim 30 nmol Ca²⁺/mg of protein) were centrifuged at 10000g (4 °C) for 5 min in an Eppendorf centrifuge 3200. The pellet was resuspended in cold homogenization buffer at a protein concentration of \sim 2 mg of protein/mL. A sample of the suspension was subsequently added to incubation medium (50 mM PIPES, 5.0 mM NaN₃, 5.0 mM EGTA, and 1.0 mM

[†]Supported by NIH Grant ES03126.

^{*} Address correspondence to this author.

¹ Abbreviations: EGTA, ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; P_i , inorganic phosphate; PIPES, 1,4-piperazinediethanesulfonic acid; pCa^{2+} , -log $[Ca^{2+}_i]$.

7742 BIOCHEMISTRY WEBB AND ANDERS

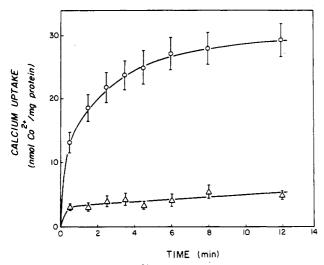


FIGURE 1: Time course of Ca^{2+} accumulation in rat liver microsomal vesicles. Incubation mixtures contained 5.0 μ M Ca^{2+} ; and 1.0 mM Mg^{2+} ; in the presence (O) or absence (Δ) of 5.0 mM MgATP. Results are expressed as the mean \pm SEM for six microsomal preparations.

 Mg^{2+} , pCa^{2+} 7.0, pH 6.8) at 37 °C containing various concentrations of ADP and P_i . Samples (200 μ L) were removed as a function of time and were washed as described above.

 $[^{32}P]P_i$ Incorporation into $[\gamma^{-32}P]ATP$. $^{45}Ca^{2+}$ -loaded microsomes were incubated with either 1.0 mM ADP or 1.0 mM [32P]P_i (1.0 Ci/mmol), or both, in the efflux medium described above. Samples (200 μ L) were added to 20 μ L of 50% (w/v) trichloroacetic acid and were centrifuged at 10000g for 5 min. The supernatant was withdrawn and stored at -70 °C. The supernatant (20 μ L) was analyzed by reverse-phase high-pressure liquid chromatography (HPLC), and the amount of [32P]P; incorporated into the ATP eluting fractions was determined by liquid scintillation spectrophotometry. The HPLC method of Ingebretson et al. (1982) was used; the eluent was 220 mM potassium phosphate (pH 5.0), 0.3 mM tetrabutylammonium hydrogen sulfate, and 1% methanol. The flow rate was 3.0 mL·min⁻¹, and absorbance was monitored at 254 nm. Free Ca²⁺, and Mg²⁺, concentrations were calculated with a program for solving multiple equilibria by the binding constants described by Fabiato & Fabiato (1979).

RESULTS

The reversal of the Ca²⁺-ATPase transport cycle was studied in Ca2+-loaded rat liver microsomal vesicles. Rat liver microsomal vesicles accumulate Ca2+ in a Mg2+- and ATP-dependent process to a value of ~ 30 nmol of Ca²⁺ (mg of microsomal protein)-1 (Figure 1). The apparent Michaelis constant for Ca^{2+}_{i} is 0.36 μ M, and the maximum velocity is 10-20 nmol (mg of microsomal protein)⁻¹ min⁻¹; these values are in agreement with those of the Ca2+-ATPases of other microsomal preparations (Dawson, 1982; Brattin et al., 1982). Present evidence, including a higher (1 order of magnitude) $K_{\rm m}$ for Ca^{2+} , a more acidic pH optimum, vanadate sensitivity, and oxalate stimulation (data not shown), indicates that the Ca2+-ATPase of microsomal vesicles differs from the plasma membrane Ca2+-ATPase (Kraus-Friedmann et al., 1982; Epping & Bygrave, 1984). The observed Ca²⁺ transport is ruthenium red insensitive, which precludes a mitochondrial source for this activity.

The rate of 45 Ca²⁺ efflux from preloaded microsomal vesicles was determined after dilution into an efflux medium (pCa²⁺ 7.00, pH 6.3). A typical experiment is shown in Figure 2. The apparent pseudo-first-order rate constants (K'_e) were determined from the slopes of semilogarithmic plots of the micro-

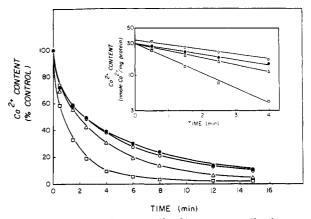


FIGURE 2: Representative plot of $^{45}\text{Ca}^{2+}$ efflux from $^{45}\text{Ca}^{2+}$ -loaded microsomes. $^{45}\text{Ca}^{2+}$ -loaded vesicles were incubated in efflux medium (pCa $^{2+}$ 7.0, pH 6.8) containing buffer (\bullet), 10 mM P_i (\circ), 2.5 mM ADP (\circ), or ADP and P_i (\circ). (Insert) Semilogarithmic plot of $^{45}\text{Ca}^{2+}$ content vs. time from which the pseudo-first-order rate constants for $^{45}\text{Ca}^{2+}$ efflux were determined.

Table I: Effect of Various ADP Concentrations on the Rate of Ca^{2+}_{i} Efflux (K'_{e}) from ${}^{45}Ca^{2+}$ -Loaded Microsomes

	$K'_{\mathbf{e}} \; (\min^{-1})^a$		
[ADP] (M)	+ADP	+ADP and Pib	
1 × 10 ⁻⁶	0.28 ± 0.03	0.28 ± 0.02	
3×10^{-6}	0.28 ± 0.02	0.31 ± 0.01	
1×10^{-5}	0.28 ± 0.02	0.34 ± 0.04	
3×10^{-5}	0.33 ± 0.01	0.44 ± 0.02	
1×10^{-4}	0.30 ± 0.02	0.48 ± 0.02	
3×10^{-4}	0.31 ± 0.01	0.52 ± 0.02	
2.5×10^{-3}	0.25 ± 0.01	0.49 ± 0.03	

^a Values were determined from the slopes of semilogarithmic plots as described under Materials and Methods. All values represent the mean $\pm SD$ for three microsomal preparations. The K'_e values for control microsomes incubated in the absence of P_i and ADP and for microsomes incubated in the presence of P_i alone were 0.19 \pm 0.02 (n = 5) and 0.23 \pm 0.04 min⁻¹ (n = 21), respectively. ^b Inorganic phosphate (P_i) concentration was 10 mM.

somal 45 Ca²⁺ content vs. time (Figure 2, inset). The basal K'_{e} was $0.19 \pm 0.02 \text{ min}^{-1}$ (mean \pm SD, n = 5) and was not affected by various pCa2+ values (6.00-7.30) of the efflux medium (data not shown). This basal Ca2+ efflux from control microsomes probably represents passive Ca2+ efflux; whether or not this efflux occurs in vivo or is a result of the homogenization or incubation procedures remains unknown. The inclusion of P_i (10 mM), a potential precipitating anion, had no significant effect upon the basal K'_{ϵ} (0.23 ± 0.04 min⁻¹, mean \pm SD, n = 21). Addition of both ADP and P_i to the efflux medium increased the K'_{e} 2.5-fold. The K'_{e} at various ADP concentrations and in the presence of P_i (10 mM) was determined (Table I). Analysis of the data by double-reciprocal linear regression analysis yielded an apparent Michaelis constant for ADP of 4 µM (data not shown). Inclusion of ADP alone resulted in a slight increase in the K'_{ϵ} (0.25 ± 0.02 min⁻¹), which is probably the result of a phosphoenzyme species or residual phosphate. The K'_e at various P_i concentrations in the presence of ADP (1.0 mM) was measured (Table II), and the apparent Michaelis constant was determined by double-reciprocal linear regression analysis to be 0.22 mM.

To determine if an electrochemical Ca²⁺ gradient was associated with ATP synthesis through reversal of the Ca²⁺-ATPase, the incorporation of [³²P]P_i into ATP was studied. Unloaded or Ca²⁺-loaded vesicles were incubated in efflux media containing either [³²P]P_i, ADP and [³²P]P_i, or ADP, [³²P]P_i, and A23187. Samples were removed as a function

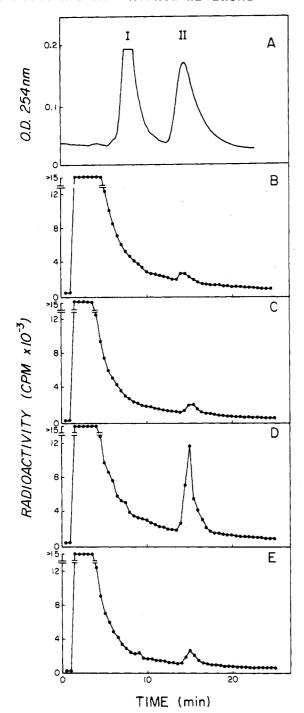


FIGURE 3: HPLC chromatograms for the determination of $[^{32}P]P_i$ incorporation into $[\gamma^{-32}P]ATP$: (A) chromatogram of ADP (I) and ATP (II); (B) chromatogram of incubation mixture of unloaded microsomes with ADP (1.0 mM) and $[^{32}P]P_i$ (1.0 mM); (C) chromatogram of incubation mixture of loaded microsomes with $[^{32}P]P_i$ (1.0 mM); (D) chromatogram of incubation mixture of loaded microsomes with ADP (1.0 mM) and $[^{32}P]P_i$ (1.0 mM); (E) chromatogram of incubation mixture of loaded microsomes with ADP (1.0 mM) and $[^{32}P]P_i$ (1.0 mM) containing A23187 (2 μ g/mL).

of time, and the amount of [32P]P_i incorporated into ATP was determined by HPLC and liquid scintillation spectrophotometry (Figure 3). Unloaded microsomal vesicles incubated in the presence of ADP and [32P]P_i incorporated a small amount of [32P]P_i into ATP (Figure 3B). A similar amount of [32P]P_i incorporation was observed when Ca²⁺-loaded vesicles were incubated in the absence of ADP (Figure 3C), which suggests that some ADP remained associated with the enzyme. When loaded vesicles were incubated in the presence of ADP and

Table II: Effect of Various P_i Concentrations on the Rate of ADP-Induced Ca²⁺; Efflux from ⁴⁵Ca²⁺-Loaded Microsomes

[P _i] (M)	$K'_{\epsilon} (\min^{-1})^a$	[P _i] (M)	$K'_{e} (\min^{-1})^{a}$
3×10^{-5}	0.24 ± 0.03	1×10^{-3}	0.46 ± 0.01
1×10^{-4}	0.29 ± 0.01	3×10^{-3}	0.47 ± 0.02
3×10^{-4}	0.36 ± 0.02	1×10^{-2}	0.48 ± 0.02
6×10^{-4}	0.42 ± 0.02		

^a Values were determined from the slopes of semilogarithmic plots as described under Materials and Methods. All values represent the mean $\pm SD$ for three microsomal preparations. The ADP concentration was 1×10^{-3} M. The K'_e values for control microsomes incubated in the presence of ADP alone and for control microsomes incubated in the presence of P_i alone were 0.25 ± 0.02 and 0.20 ± 0.01 min⁻¹, respectively.

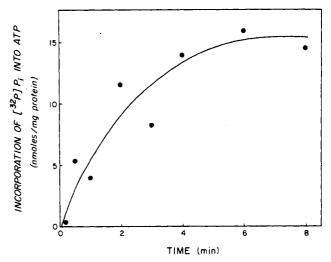


FIGURE 4: Time course of $[^{32}P]P_i$ incorporation into $[\gamma^{-32}P]ATP$. The amount of $[^{32}P]P_i$ incorporated into ATP, which was present in fractions eluting from 13 to 19 min, was determined by liquid scintillation spectrophotometry. Values represent the net amount of $[^{32}P]P_i$ incorporated into ATP by Ca²⁺-loaded microsomes incubated with ADP and $[^{32}P]P_i$ (Figure 3D) minus the amount incorporated by unloaded microsomes under the same conditions (Figure 3B).

 $[^{32}P]P_i$, a greater than 10-fold increase in the amount of $[^{32}P]P_i$ incorporated into ATP was observed (Figure 3D). This increase was abolished by the inclusion of A23187 in the efflux medium (Figure 3E), which indicates that an electrochemical Ca^{2+} gradient facilitates the coupling of Ca^{2+} efflux to ATP synthesis.

The amount of [32P]P_i incorporated into ATP was a function of time (Figure 4). The $[^{32}P]P_i$ incorporation reached a plateau within 4-6 min, which agrees with the rate of ⁴⁵Ca²⁺ efflux (Figure 2). The synthesis of approximately 15 nmol of $[\gamma^{-32}P]ATP$ (mg of protein)⁻¹ was associated with the efflux of Ca²⁺, which indicates a stoichiometry of Ca²⁺ efflux to ATP synthesis of 2:1. This stoichiometry of 2:1 has also been observed for the sarcoplasmic reticulum Ca2+-ATPase (Hasselbach, 1978). Because the passive Ca²⁺ efflux represents nearly 50% of the total Ca²⁺ efflux, the stoichiometry between active Ca2+ efflux and ATP synthesis would be 1:1. More accurate determinations of the stoichiometry are precluded, because the mechanism for the basal Ca²⁺ efflux is unknown and because hydrolysis of newly synthesized ATP may occur by the Ca²⁺-ATPase, by the basal Mg²⁺-ATPase, or by the recently described proton-translocating ATPase (Rees-Jones & Al-Awqati, 1984) activities.

The effect of the ATP/ADP ratio on the rate of active Ca^{2+} efflux $(\Delta K'_e)$ was studied (Figure 5). As the ATP/ADP ratio is decreased from 30 to 1, there is a large increase in the $\Delta K'_e$. Conditions leading to decreases in the normal cytosolic ATP/ADP ratio of ~ 10 (Schwenke et al., 1981) would be

7744 BIOCHEMISTRY WEBB AND ANDERS

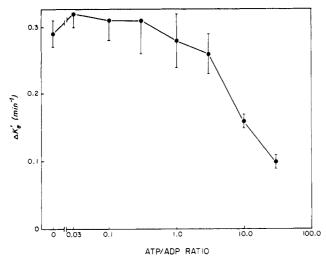
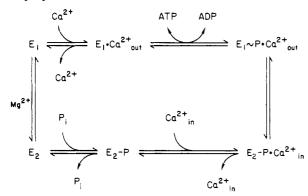



FIGURE 5: Effect of the ATP/ADP ratio on the rate of active Ca^{2+} efflux. Active Ca^{2+} efflux ($\Delta K'_e$) was determined by subtracting the rate of $^{45}Ca^{2+}$ efflux in the presence of various ATP/ADP ratios and P_i (10 mM) from the rate of $^{45}Ca^{2+}$ efflux in the presence of P_i alone. Total nucleotide concentration was 1.0 mM. Values represent the mean \pm SEM for three to four different microsomal preparations.

expected to promote Ca²⁺ release by Ca²⁺-ATPase reversal. Such conditions leading to a decrease in the liver cytosolic ATP/ADP ratio or in the adenylate energy charge include hypoxia (Kinnula & Hassinen, 1978; Aw & Jones, 1982), fasting (Soboll et al., 1984), trialkyltin (Weibkin et al., 1982) and ethionine (Farber, 1967) toxicity, and septicemia (Tanaka et al., 1982).

DISCUSSION

The mechanism of the Ca²⁺-ATPase of sarcoplasmic reticulum (deMeis & Vianna, 1979) and of erythrocyte plasma membrane (Chiesi et al., 1984) is well characterized. This general scheme for the ion-motive E₁E₂ATPase enzymes has been proposed:

where $E \sim P$ and E-P denote the reactive and low-energy acyl phosphate conformations of the phosphoenzyme, respectively. Characteristics of this E_1E_2ATP ase mechanism include inhibition by high intravesicular Ca^{2+} concentrations, Mg^{2+} enhanced enzyme dephosphorylation (E_2-P), the formation of a phosphoenzyme intermediate, complete reversibility of the transport cycle, and the requirement for Ca^{2+} in the synthesis of ATP during the Ca^{2+} -ATPase reversal.

The Ca^{2+} -ATPase of rat liver endoplasmic reticulum vesicles shares many features of this ion-motive E_1E_2 ATPase mechanism. Intravesicular accumulation of Ca^{2+} inhibits Ca^{2+} -ATPase activity (Brattin & Waller, 1983). The formation of a hydroxylamine-sensitive phosphoenzyme intermediate with a M_r of 118 000 and the Mg^{2+} -enhanced dephosphorylation of this phosphoenzyme have also been demonstrated (Heil-

mann et al., 1984, 1985). In addition to the similarities associated with the E_1E_2ATP ase mechanism, the tryptic and chymotryptic digests of the sarcoplasmic reticulum and endoplasmic reticulum Ca^{2+} -ATPase indicate extensive homology (Heilmann et al., 1984). The results presented herein provide evidence for the reversibility of the transport cycle associated with the Ca^{2+} -ATPase and for the coupling of ATP synthesis to Ca^{2+} efflux. Disruption of the Ca^{2+} gradient with A23187 and the associated loss of ATP synthesis indicate a requirement for a Ca^{2+} gradient for ATP synthesis.

The mechanism of the transformation of the electrochemical Ca²⁺ gradient into the chemical energy required for ATP synthesis is not understood. In a number of preparations, including the Ca2+-ATPase of sarcoplasmic reticulum (Knowles & Racker, 1975) and of erythrocyte plasma membranes (Chiesi et al., 1984), the synthesis of ATP by Ca²⁺-ATPase is accomplished in the absence of a Ca²⁺ gradient. Ca²⁺ appears to function in the transfer of the P_i from the phosphoenzyme to ADP, rather than in the formation of the E₂-P species. In both the sarcoplasmic reticulum (de Meis & Inesi, 1982) and the erythrocyte (Chiesi et al., 1984) Ca²⁺-ATPases, dimethyl sulfoxide enhances the phosphorylation of the ATPase by P_i to form E₂-P. However, an increase in the water activity and high concentrations of Ca²⁺ are required to observe the phosphorylation of ADP, presumably by the reactive $E_1 \sim P$ conformation. Indeed, an increase in the water activity has been shown to enhance the formation of the $E_1 \sim P$ conformation from the E_2-P conformation (de Meis & Inesi, 1982). Hence, it is postulated that high concentrations of Ca2+ facilitate the transition of the low-energy E_2 -P conformation to the reactive $E_1 \sim P$ conformation, which is capable of transferring P_i to ADP. Either a high concentration of Ca²⁺ in unloaded, permeable Ca²⁺-ATPase vesicles or a Ca²⁺ gradient in intact Ca²⁺-ATPase vesicles, where millimolar concentrations of Ca2+ are achieved, will likely drive the reversal of the transport cycle through the interaction of Ca^{2+} with the low-affinity site of the E_2 -P conformation.

The synthesis of ATP by the rat liver microsomal Ca^{2+} -ATPase has recently been described (Heilmann et al., 1985). When the $E \sim P \cdot Ca^{2+}_{out}$ phosphoenzyme species, formed from $[\gamma^{-32}P]ATP$, was incubated in the presence of ADP, phosphate transfer to ADP was observed. Low Ca^{2+} concentrations were required for ATP synthesis, because preincubation with EGTA inhibited phosphoenzyme breakdown. The Ca^{2+} gradient, which is required for ATP synthesis in our preparation, may serve to convert the low-energy acyl phosphate (E_2-P) phosphoenzyme conformation to the reactive conformation $(E_1 \sim P)$. The possibility that the Ca^{2+} -ATPase is phosphorylated by P_i and that the phosphoenzyme species formed is able to transfer phosphate to ADP, both in the absence of a Ca^{2+} gradient, is currently under investigation.

The physiological significance of Ca²⁺-ATPase reversal is uncertain, although during toxic insult alterations in the ATP concentration and ATP/ADP ratio have been observed (Bridges et al., 1983). Ca²⁺-ATPase reversal, with the possibility of cytosolic Ca²⁺ accumulation, may result from alterations in the ATP/ADP ratio. It remains to be determined if Ca²⁺-ATPase reversal is associated with alterations in cytosolic calcium homeostasis, which may represent one of many possible mechanisms involved in cell death.

Elucidation of the mechanism and characteristics of the endoplasmic reticulum Ca²⁺-ATPase will enhance our understanding of its role in intracellular Ca²⁺ homeostasis. It is interesting to speculate that many of the hormones that exert their glycogenolytic effect through alterations in the Ca²⁺_i

homeostasis and the subsequent activation of phosphorylase A may also affect the endoplasmic reticulum Ca²⁺-ATPase. Inhibition or stimulation of the Ca²⁺-ATPase could either prolong or shorten the glycogenolytic activity. Such effects have been observed with the rat liver plasma membrane (Ca²⁺+Mg²⁺)-ATPase (Prpic et al., 1983; Lotersztajn et al., 1984).

REFERENCES

- Anders, M. W. (1968) Arch. Biochem. Biophys. 126, 269-275. Aw, T. Y., & Jones, D. P. (1982) J. Biol. Chem. 257, 8997-9004.
- Becker, G. L., Fiskum, G., & Lehninger, A. L. (1980) J. Biol. Chem. 255, 9009-9012.
- Berridge, M. J. (1984) Biochem. J. 220, 345-360.
- Berridge, M. J., & Irvine, R. F. (1984) Nature (London) 312, 315-321.
- Brattin, W. J., & Waller, R. L. (1983) J. Biol. Chem. 258, 6724-6729.
- Brattin, W. J., Waller, R. L., & Recknagel, R. O. (1982) J. Biol. Chem. 257, 10044-10051.
- Bridges, J. W., Benford, D. J., & Hubbard, S. A. (1983) Ann. N.Y. Acad. Sci. 407, 42-63.
- Chiesi, M., Zurini, M., & Carafoli, E. (1984) *Biochemistry* 23, 2595-2600.
- Dawson, A. P. (1982) Biochem. J. 206, 73-79.
- de Meis, L., & Tume, R. K. (1977) Biochemistry 16, 4455-4463.
- de Meis, L., & Vianna, A. L. (1979) Annu. Rev. Biochem. 48, 275-292.
- de Meis, L., & Inesi, G. (1982) J. Biol. Chem. 257, 1289-1294.
- Epping, R. J., & Bygrave, F. L. (1984) *Biochem. J. 223*, 733-745.
- Fabiato, A., & Fabiato, F. (1979) J. Physiol. (Paris) 75, 463-505.
- Farber, E. (1967) Adv. Lipid Res. 5, 119-183.
- Farber, J. L. (1981) Life Sci. 29, 1289-1295.
- Hasselbach, W. (1978) Biochim. Biophys. Acta 515, 23-53.
- Heilmann, C., Spamer, C., & Gerok, W. (1983) Biochem. Biophys. Res. Commun. 114, 584-592.

- Heilmann, C., Spamer, C., & Gerok, W. (1984) J. Biol. Chem. 259, 11139-11144.
- Heilmann, C., Spamer, C., & Gerok, W. (1985) J. Biol. Chem. 260, 788-794.
- Ingebretson, O. C., Bakken, A. M., Segadal, L., & Farstad, M. (1982) J. Chromatogr. 242, 119-126.
- Jewell, S. A., Bellomo, G., Thor, H., Orrenius, S., & Smith, M. T. (1982) Science (Washington, D.C.) 217, 1257-1259.
- Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F.,
- & Williamson, J. R. (1984) J. Biol. Chem. 259, 3077-3081. Kinnula, E., & Hassinen, I. (1978) Acta Physiol. Scand. 104, 109-116.
- Knowles, A. F., & Racker, E. (1975) J. Biol. Chem. 250, 1949-1951.
- Kraus-Friedmann, N., Biber, J., Murer, H., & Carafoli, E. (1982) Eur. J. Biochem. 129, 7-12.
- Lotersztajn, S., Epand, R. M., Mallat, A., & Pecker, F. (1984)
 J. Biol. Chem. 259, 8195–8201.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- Murphy, E., Coll, K., Rich, T. L., & Williamson, J. R. (1980) J. Biol. Chem. 255, 6600-6608.
- Panet, R., & Selinger, Z. (1972) *Biochim. Biophys. Acta* 255, 34-42.
- Prpic, V., Green, K. C., Blackmore, P. F., & Exton, J. H. (1984) J. Biol. Chem. 259, 1382-1385.
- Rees-Jones, R., & Al-Awqati, Q. (1984) Biochemistry 23, 2236-2240.
- Schanne, F. A. X., Kane, A. B., Young, E. E., & Farber, J. L. (1979) Science (Washington, D.C.) 206, 700-702.
- Schwenke, W.-D., Soboll, S., Seitz, H. J., & Sies, H. (1981) Biochem. J. 200, 405-408.
- Soboll, S., Seitz, H. J., Sies, H., Ziegler, B., & Scholz, R. (1984) *Biochem. J.* 220, 371-376.
- Tanaka, J., Sato, T., Kamiyama, Y., Jones, R. T., Crowley, R. A., & Trump, B. J. (1982) J. Surg. Res. 33, 49-57.
- Trump, B. F., & Berezesky, I. K. (1984) in *Drug Metabolism* and *Drug Toxicity* (Mitchell, J. R., & Horning, M. G., Eds.) pp 261-300, Raven Press, New York.
- Weibkin, P., Prough, R. A., & Bridges, J. W. (1982) *Toxicol. Appl. Pharmacol.* 62, 409-420.